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Centre modes in the neighbourhoods of both branches of the neutral curve are
identified for viscous rotating flow in a pipe when the Reynolds number is sufficiently
large. Limit equations satisfied by these modes are established, and solutions are
computed as functions of the azimuthal wavenumber and one additional parameter,
Jt say, representing the distance from a neutral curve; these compare favourably with
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474 K. STEWARTSON, T. W. NG AND SUSAN N. BROWN

existing calculations of the full equations at large but finite values of R. The question
of the attainment of an inviscid limit as |¢| > 00 is addressed, and it is shown that
the solution on the unstable side of the neutral curve is dominantly viscous. The
resulting highly oscillatory viscous modes are examined and are shown to be
present throughout the region bounded by the neutral curve. It is anticipated that
the results may have application in the study of vortex breakdown.

1. INTRODUCGCTION

Y 4

,_,‘]‘ The linear stability of vortex flows, both inviscid and viscous, has attracted considerable interest
;5 — over the past few years in the expectation that such studies may lead to greater understanding
of the phenomenon of vortex breakdown. This study concerns the normal modes of Poiseuille
olm P ‘ y
[ E flow in a rotating pipe at large values of the Reynolds number. Pedley (1968, 1969) showed
)= that circular Poiseuille flow was destabilized by the rotation, and constructed modes in which
= O the disturbance was distributed throughout the width of the pipe in the situation where the
b g p1p

ratio of the axial to azimuthal wavenumber was small. He demonstrated instability when R,
the Reynolds number based on the maximum unperturbed axial velocity and the radius of the
pipe and defined here in §2, was larger than 83, and the results are valid for rotation rates that
are not too small. Numerical solutions of the viscous equations for small rotation rates were
obtained by Mackrodt (1976) who suspected that the turbulent bursts observed experimentally
in the theoretically stable Poiseuille flow were due to residual swirl in the incoming flow.

Inviscid wall modes for swirling Poiseuille flow were obtained by Maslowe & Stewartson
(1982) for large values of the azimuthal wavenumber n. These asymptotic modes have the
disturbance concentrated in the neighbourhood of the pipe wall near which there is a critical
layer. The results were compared with earlier calculations of Maslowe (1974) at finite n, and
the conclusion is that the growth rate does not increase with » but achieves a maximum at »
approximately equal to four. This asymptotic study for rotating Poiseuille flow has a parallel
when the basic flow is an unbounded trailing-line vortex, though in this situation the rotation
is stabilizing rather than destabilizing. In that case the large azimuthal wavenumber eigen-
solutions are ring modes and have been studied by Leibovich & Stewartson (1983) who also
obtain a sufficient condition for the instability of a general columnar vortex. This paper did not
include an analysis of the neutral points; these have recently been examined by Stewartson &
Capell (1985) and by Stewartson & Leibovich (1987).

The modes to be studied here have the maximum disturbance concentrated near the axis of
the pipe and are therefore centre modes, in contrast with those described above. In their
extensive study of the linear stability of rotating pipe flow at finite values of the Reynolds
number R and rotation rates £ (equivalent to R/e, € being a Rossby number), Cotton & Salwen
(1981, hereafter referred to as C.S.), showed that as R increases the near-neutral modes in their
calculation become centre modes. This phenomenon seems to occur near both branches of their
neutral curves in an (R, Q)-plane. As R becomes large one branch, ‘ the upper’, is distinguished
by en &~ a (« the axial wavenumber) and the lower by €*/R = O(1). Inviscid centre modes
with en & a and € » 1 have previously been discussed by Stewartson & Brown (1984), who
attempted to trace their development from the modes introduced by Pedley as a/n increased
from the values required for the validity of that theory. It is viscous modes that are of interest
here however, with particular emphasis on the question whether the inviscid centre modes
of Stewartson & Brown are in any sense limits of the centre modes encountered by C.S. as the
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VISCOUS CENTRE MODES ' 475

Reynolds number of their calculation takes on large but finite values. The connection between
the viscous-stability and inviscid-stability characteristics of a flow is worth establishing to
promote a proper understanding of the evolutionary process of a flow field. For although the
inviscid characteristics are easier to calculate and might be expected to dominate this process
when the Reynolds number is large, it is always necessary to enquire if the inviscid property
is the limit of a viscous property as the Reynolds number becomes infinite, and if so whether
the two are sufficiently close at a reasonable value of R for the inviscid result to be accepted
as sufficiently accurate in a particular problem. We shall find that in the case of these centre
modes the inviscid limit is nof invariably attained ; indeed when the flow is unstable the inviscid
limit is a possibility but it is not the dominant limit at large Reynolds number.

The plan of this paper, which involves examination of both branches of the neutral curve,
is as follows. In §2 we describe the geometry, define the parameters of the problem and give
the linearized stability equations solved by C.S. These equations contain the four prescribed
parameters a, n, €, R, of which 7 is to be an integer, and the eigenvalue w which is to be
determined so that the homogeneous sixth-order system has a non-trivial solution. In §3 the
centre-mode equations for the neighbourhood of the ‘upper’ branch, ez & a, of the neutral
curve, are obtained. In these equations the number of parameters is reduced from four to two,
namely n and u, of which the latter measures a scaled distance from the neutral curve. These
equations are to be solved over an infinite range of a scaled radial variable s, for these centre
modes are, as noted by C.S., independent of the position of the wall. Analytic solutions are
obtained for small || and for large ||, the latter of which are, in the limit || - 00, the inviscid
centre modes of Stewartson & Brown. These analytic solutions are then compared with results
from C.S., and from additional data kindly supplied by Professor Salwen, at various large
values of the Reynolds number R for the case of @ = n = 1. It is verified that their modes are
indeed becoming functions of the parameter x4 alone as R increases, i.e. they are centre modes,
and their numerical solutions and the asymptotic solutions of the limit equations are in good
agreement for small || and for large negative x (the stable side of the neutral curve). However,
for large positive g (the unstable side) the asymptotic solution, for the mode that is least stable
at 4 = 0, becomes neutral as g - 00 with an eigenfunction that exhibits a critical layer, whereas
the results of C.S. indicate an increasing growth rate and a non-singular eigensolution. To
resolve this lack of agreement, numerical solutions of the limit equations at finite values of u
are undertaken with particular attention being paid to the values n = 1 and 2. The value of
unity for z is special in that it is unique in allowing for a non-zero radial velocity at the axis
so that particles on the axis at any instant may be deflected from it; such ‘bending’ modes are
described for the analogous trailing-line vortex by Leibovich ¢t al. (1986) who show that, in
certain circumstances, they can support solitons which may contribute to the transfer of
turbulence developed in a zone of agitated fluid. The outcome of the numerical integrations
for finite u is that the asymptotic expansion for |¢| < 1 is confirmed, as is the inviscid limit for’
1 < —1. However, for 4 > 1 the most unstable mode does not assume the inviscid form, but
confirms the increasingly unstable trend predicted from the results of C.S. On the other hand,
when z = 1 the mode that at 4 = 0 is the second least-stable mode attains the inviscid limit,

“and when 7 = 2 the third mode does so. The eigenfunctions of the modes that remain viscous
as u increases are quite different from those of the modes that become inviscid. They are highly
oscillatory with the region of oscillation spreading out and moving away from s =0 as u
increases; in contrast, the oscillatory region of the inviscid mode becomes concentrated in the
neighbourhood of the critical layer the existence of which is quite evident at values of g as low

36-2
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476 K. STEWARTSON, T. W. NG AND SUSAN N. BROWN

as 50. For the viscous modes the appropriate parameter is st so the asymptotic form is not
established until  is considerably larger.

~ Before analysing the asymptotic form of these viscous modes, which thus dominate the near-
neutral inviscid modes of Stewartson & Brown (1984), we present, in §4, a similar study to that
of §3 but for the ‘lower’ branch of the neutral curve where €/R = O(1). There are again two
parameters of the centre-mode equation: z and o, which is analogous to . These equations
have also been obtained by Berry & Norbury (1985) who solve them for z = 1 to find the value
of o for neutral stability. We confirm their value of 6.5 for this but we are more interested in
solutions for o > 1 for which an inviscid limiting form for the equations is also possible. Analytic
solutions for small |o| have not been found in this case. Comparison with the results of C.S.
taken from data at various large values of R again shows no agreement of the most unstable
mode with the proposed inviscid asymptotic form. Numerical solutions of the centre-mode
equations at finite values of o show a phenomenon similar to that which occurs in the upper
branch problem. This time, when n = 1 the first two modes do not attain the inviscid limit but
the third does; when n = 2 it is the fourth mode that attains the proposed asymptote. The
unstable viscous modes are similar to those encountéred near the upper branch.

In §5 we present an analysis for these highly oscillatory increasingly unstable viscous modes,
and obtain an asymptotic form that is in good agreement with the numerical solutions of §§3
and 4 at finite but large values of # and . Comparison with the numerical solutions is deferred
until §7, because in §6 we show that both upper and lower branch problems become identical
as p, o respectively increase. This means that these oscillatory eigensolutions persist right across
the unstable region of the (R, £2)-plane of C.S. That the region of validity of these modes might
in fact extend from one branch of the neutral curve to the other was suggested to us by Professor
F. T. Smith, F.R.S., during the course of the investigation.

In addition to the establishment of these unstable viscous modes two other points of interest
have arisen from this study. The first is that an inviscid solution, even when it exists as a limit
solution of a system of equations, may not in fact be attained as R+ c0. Secondly, the eigenvalue
to be found is not necessarily an analytic function of the parameters of the equation; indeed
this property does not hold for any of the cases discussed here. The important eigensolutions
are the viscous ones and, although their large amplitudes and steep gradients eventually violate
the assumptions under which the equations were linearized, they do confirm the extreme
instability of this rotating flow. An examination of their presence or otherwise in unbounded
vortices, in particular in the trailing-line vortex of Lessen et al. (1974), would be of interest as
in that instance, contrary to the example studied here, the swirl is stabilizing.

2. THE SETTING OF THE PROBLEM

We take 7, to be the radius of the pipe and choose a set of cylindrical polar coordinates
(1o X, 747, 6) with 0.X along the axis so that the pipe boundary is defined by r = 1. The basic flow
of the incompressible fluid is steady with azimuthal velocity £, r,7 and Poiseuille axial velocity
€7y 2,(1—1%), € being the Rossby number. We define R = er2Q,/v, where v is the kinematic
viscosity, to be the Reynolds number of the basic flow and, to compare with the results of C.S.,
we set £ = R/e. The fluid is subjected to a small disturbance in which the components of the
velocity and of the pressure respectively take the form:

[F,iG, ; pP) exp (inX—in0—iQy0T), @1)
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where p is the density, o is a real positive constant and n a positive integer, while w is a constant
to be found. The reason for taking « to be positive is that earlier studies have indicated that
an 2 0 for instability. We do not here consider n = 0 because the criterion of Howard & Gupta

(1962) for stability of the basic flow to axisymmetric disturbances is violated only if € > 2.
The four quantities F, G, H, P are functions of r only. After a direct substitution into the

Navier-Stokes equations (see also Lessen & Paillet 1974) we find that ,
owrF+1G'+G—nH=0 (2.24a)

from the equation of continuity, and

- _€fg 1 o "\
yF—2e1G+aP _i—R-[F +-F —(a +?)F], (2.25)
. L
yG+2H—P =.-§[G”+%G’—." ;16—a26+%ﬁ], (2.2¢)
. -
yB+26-"F = %[zm%ﬁf-” ;lﬁ-a2ﬁ+3:2—a], 2.24)

respectively, from the (X, r,6) components of the momentum equation, where a prime denotes
differentiation with respect to the appropriate independent variable, in this case 7, and

| y=ae(l—r)—w—n. v (2.3)
The appropriate boundary conditions are that I
F=G=H=0 at r=1, ' (2.4)

while F, G and H are smooth at 7 = 0. The requirement of regularity of F, G and H at r = 0
with G(0) = 0,z > 1, but G’'(0) = 0ifn = 1, is sufficient to ensure that the boundary conditions
derived and discussed by Batchelor & Gill (1962) are satisfied. In the event of viscous effects
being small over the majority of the range 0 < r < 1, the conditions at r = 1 may be replaced

by G=0 at r=1, (2.5)

with an error O(aR)™ due to boundary-layer effects near the wall of the pipe.

The numerical studies of C.S. for finite &, z (typically & = n = 11) strongly suggest that when
R > 1 there are neutral modes in the neighbourhood of en = & and where €2/R = O(1). For
sufficiently large R their neutral curves, drawn in an (R, )-plane for fixed values of » and a,
essentially have as the upper branch the straight line en = & and as the lower branch the
parabola €?/R = const. They interpreted these modes as centre modes in that the disturbance
was increasingly concentrated near the axis and the position of the wall was of little importance.
For the neutral mode that occurs in the neighbourhood of en = & the authors make a com-
parison with Pedley’s (1969) theory of the viscous stability of such flows when € < 1, | < 1,
and R,n and a/e are finite. The comparison is good not only when these conditions are satisfied
but also in certain circumstances when they are not. Pedley’s theory does not assume that the
eigenfunctions are centre modes and indeed his representation of them by three Bessel functions
of real argument in a combination that must satisfy the boundary conditions on the pipe would
suggest that they should, even when en = a, be termed wall modes.

+ Cotton & Salwen’s notation is slightly different from that adopted here. The sign of n is changed in (2.1) and
they then set « = —1, n = 1. Their temporal dependence e°" is related to ours through &, =0, 0, = 0.
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In the following sections we confirm that the near-neutral modes of C.S. in the neigh-
bourhoods of both branches of the neutral curves in the (R, 2)-plane become centre modes when
R > 1. This confirmation is achieved by considering the branches separately and undertaking
a limiting procedure that in each case reduces the number of parameters from four to two, one
of which is the azimuthal wavenumber 7. As the second of these parameters increases, possible
limiting forms are the inviscid solutions of Stewartson & Brown (1984), although it emerges
that in general these are not attained and the dominant limiting eigensolutions are viscous in
origin.

3. THE NEIGHBOURHOOD OF €n =«

Because the numerical results of C.S. indicate strongly that the eigenfunctions in the neigh-
bourhoods of the upper branches of their neutral curves are centre modes we make the
scaling

r= (aR) s (3.1)
and we shall also assume that
o =oae—n+atRn™, €= a/n+pctR ™, (3.2)

where 5,4, 4 are O(1) and R > 1. Thus x represents a scaled distance from the curve € = a/n
and will be shown to assume a finite non-zero value g, when neutral stability is attained. The
unstable side of the curve is described by # > g, and the stable side by # < g,. In addition, 4
replaces w as the complex eigenvalue to be found.

Then a formal solution of (2.2) may be written down as an asymptotic series, in descending
powers of R%, of which the leading terms are

= ofRIF(5)+O(RY), G=G,(s)+O0(RY),
nH— (1G)’ = adR73sF,(s) + O(R™), (3.3)
nP—21G = oARP,(5) + O(R™Y),

and satisfy the differential equations

2
(s*+A4) F—P,+2usG, = i F”+ F— F], )
(s2+A)Gl—2sFl+P;—1(G”+ G, — ";HG +22(sG)] » (3.4)
P .F " 2+1 ’ 2n?
6 ) 66+ =i 6 L6 - 6+ 26

It is convenient to eliminate the reduced pressure F, in (3.4) which attain a certain amount
of symmetry if we define

F, = sK,/n (3.5)
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VISCOUS CENTRE MODES : ‘ 479
so that
s2(A+s?) (sKy+ K, +nG,) + 2nus*(sG,)’
=i[s*K} +45°K] — (n* — 1) sK; + (n* — 1) K, +ns*G; + 3nsGy—n(n*—1) G,], (3.64a)
s2 (A +52) (sGy+ G, +nK,) + 2n°us*G,
= i[s*Gy +45°G; — (n? —1) sGy+ (n*— 1) G, +ns*K{ + 3nsK; —n(n*—1) K,]. (3.6)

We note that as a result of the transformations (3.2) and (3.3), followed by the limiting
process R— 00, the number of parameters has been reduced from four to two, namely # and p.
The procedure may be regarded as successful if, for integer n and given finite value of x, a
value of 4 can be found such that (3.6) have a solution in which G, and K, are regular at
s = 0 and vanish as s— 00. For general g this is a numerical problem and a description of the
numerical method of solution we used and the results are presented in §3.4. In the limits -0
and |p| > 00 analytic solutions are obtainable, however, and we first discuss (in §3.1) those
available in the neighbourhood of 4 = 0.

3.1. The analytic solutions for small values of

When g = 0 the centre-mode equations (3.6) have two sets of eigenfunctions that may be
found exactly. They are obtained by exploiting the symmetry of (3.6, §) in this limit for which
purpose we define

K,+G, =M, K,—G, =N (3.7)
and add and subtract the equations which results in
sE(A+52) [sM' + (1 +n) M]+2nus*(sG,)’ + 2n*us’G,
=i[s*M" + (4+n) M"— (n*—3n—1) sM'— (n—1) (n*—1) M], (3.84)
S (A+5?) [sN'+ (1—n) N]+2nus*(sG,) —2n*us*G,
=i[*N"+ (4—n) PN"— (n®+3n—1) sN' + (n+ l)v(nz— 1) N]. (3.8b)

The first family of solutions with g = 0 has N = 0. To derive them we set M = s"""1Q in
(3.84a) and then set

Q=Qe¥, p=ein (3.9)
with the result that

SQ - [265 —(1-20) 5] @~ [(2-21) f*+1-2n+ A7) Q= 0. (3.10)

The values of A are now chosen so that @ is a polynomial whose first term is s**~. The values
of A for this to be possible are

A=—22p+n)/8 (p=0,1,2,...) (3.11)
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and the eigensolutions M, corresponding to the first three values of p are
M, = s‘"‘l{l—e“%ﬁ"z}; A=-—2n/p, ' . 1
M, = s""l{l—e‘*”"(2+2(§-ﬂ32)”/n!)}; A=—2(2+n)/B, (3.12)
M, = s-"-1{1—e-¥ﬂ" (2+4(§ﬂ32)"+1/(n+1) ')} ; A=—2(4+n)/p,)

n-1

where T =3 @ (3.13)

n =0
We note that M, = O(s"™*) as s >0, and that M, = O(s™"") as s> 00, an algebraic decay that
in fact persists for all values of # and makes the numerical work of §3.4 more difficult.
When g =0 and M = 0 the second family of eigenfunctions is associated with the same
values of 4 as in (3.11) except that p cannot now be zero. The first two are

Ny=s"1e¥", A =—2(2+n)/8; }

; (3.14)
N, =s"1e ¥ (1—B%/n); A=—2(4+n)/p.

It is possible at this stage to make direct comparison with the solutions of the full equations
(2.2) made available to us by Professor Salwen. From this data we have extracted the values
ofw, witha=n=1,e=1 and R = 10%, obtained by using a matrix of order 30, for the five
lowest eigenvalues. These are:

©
—0.01424—0.01426i
—0.04242 —0.04253i
—0.04270—0.042 33i
—0.06841—0.06944i
—0.07068 —0.070 50i.

The trend evident there, namely the existence of a single eigenvalue followed by higher ones
in pairs, may be distinguished in the S-data for all values of R greater than about 10%. The
single eigenvalue corresponds to the eigenfunction M, and p = 0 in (3.11), and the other two
pairs correspond to M; and N, with p = 1, and to M, and N, with p = 2.

The knowledge of the analytic form of these double eigenvalue points is of assistance in
initiating the numerical solutions of (3.6) for non-zero . Additional terms in the expressions
for small x may be obtained if required, and for the leading mode we have

A=—=2ne"—nu+ A, y®+ 0 (s, (3.15)
where ' Ay =—etAn?—1) when n=1, (3.16)
and - Ay,=—c " (in?—5) when n=2. .‘ (3.17)

In terms of the original eigenvalue w this means that if n = 1

w=0t—1-2et"dR ¥4 0 (a?—1) (e—a) + et IR (AN —1) (e—a)®+ O(R(e—a)®),
(3.18)
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VISCOUS CENTRE MODES 481
and ifn=2

0 =La?—4) 2" iR 4 a (a?—1) (2e—a) + el"a iR (AN —5) (2 — )+ O (R(2e—a)?)
(3.19)

provided, in each case, that R(ne—a)® is small.

For the second and third eigenvalues given by p = 1 and 2 in (3.11) it is necessary to take
appropriate linear combinations of M,, N, and AM,, N, respectively. With an O(u) correction
the eigenvalues (four in all) given to leading order by p =1 and 2 in (3.11) are

A = —2e(2p+n) + unf(n®+ p) F+ O(u?) (3.20)

though it has not been confirmed whether this formula also holds for higher values of p. There
is no term O(z}) in (3.20) as there are two independent eigenfunctions associated with the
double eigenvalue at g = 0.

When |g| is large the numerical solutlons to be described in §3.4 indicate that the eigen-
functions take one of two possible limiting forms, and we discuss next the more straightforward
of these in which the limit is inviscid.

3.2. The inviscid limit when |p| > 1

It emerges that there are two possible limiting forms of solution when |¢| > 1, one of which
is essentially inviscid and is appropriate when g4 < —1. When g > 1 this limit is also an
analytical possibility and we shall find that it can also be achieved numerically, but that it does
not correspond to the most unstable modes which are dominated by the viscosity. The inviscid
modes are, to leading order, of the same structure as those of Stewartson & Brown (1984) as
R— o0, and (en—a)/en— 0, in that order.

When || is large the natural scaling is to assume that s* = O(|u|) and 4 = O(|x|) in which
case the right-hand sides of (3.6) are of order |x|™® relative to the left-hand sides. The implication
then is that the modes are inviscid. We now apply a consistency check on this conjecture by
using it to evaluate the two leading terms in the asymptotic expansion of A4 in descending
powers of u. For the leading term we obtain, from (3.65),

,  2n’uG -
— 1K, = (sG1)' + 2+ 0(u™*G)) (3.21)
and then, from (3.64),
2,2 ’
szG'l'+3sG'1+[1 —n”—%} G, =0 (3.22)
of which the solution regular at the origin is
n—-1 2
Gl(S) =m?)—qF(d,b n+ 1, A ) (323)

where F is a confluent hypergeometric function and ¢, ¢ and b are defined by

A=—n*uf/q(qg+1), a=—¢q, b=n—q. (3.24)

37 Vol. 324. A
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The expression for G, (s) given in (3.23) has the correct, O(s™""!), algebraic decay if 4 is chosen
to be a negative integer or zero. If, for example, b = 0 then G, has the simple form

Su—l
Gl(s) = [sz—n/A/(n+1)]" (325)
and 4 =—nu/(n+1). If b = —1 then
' B sl \ nu
Gils) = (s*—nu/(n+1) (n+2))"*? (J +(n+1) (n+2)) (3.26)

and 4 = —n®u/(n+1) (n+2). The hypergeometric function reduces to a polynomial in s* of
degree (—b) to give the successive modes.

The correction to the formula (3.24) for 4 is O(x™') and may be obtained by substituting
the leading approximations to G,, K into the right-hand sides of (3.6) and requiring that the
new differential equations have a solution that is regular at s = 0 and vanishes as s> 0. This
condition leads to

g 2(n+1) (n+2)% i

1 -3
n+1 243 a0 (3.27)

for the modes to which (3.25) is the leading approximation, and

— 2 a 2 k i
. g 2(n+1) (n42) (0" + 10n° +24n +12) i+0(ﬂ_a) (3.28)

(n+1) (n+2) n*(2n+5)

when (3.26) is the leading approximation. The eigenvalue corresponding to the third mode has
also been calculated but is not displayed.

We now argue that the asymptotic expansions (3.27) and (3.28) for A are correct for # both
positive and negative although it is clear from (3.25) and (3.26) that, when g > 0, G, has a
singularity at a finite value of #7%s. There are two ways of continuing G, through this critical
layer, either of which justifies (3.27) and (3.28). The first way is to solve the third-order
equations obtainable from (3.6) in the region in which

s—npi/g(g+ 1)t = O(u), K,=O0(G), (3.29)

where the viscous terms are important at leading order. This argument has in fact been carried
through but is not presented here. Alternatively, analytic continuation of G, through the critical
layer may be made upon noting that A4 has a small positive imaginary part, so that the
singularity is in effect below the real axis of s, with the result that deformation of the contour
of integration above the real axis may be made without enclosing between the contour and the
axis any singularity of G,.

Having thus obtained expansions for A for both small and large || it is of interest, before
describing the numerical integrations of (3.6) for moderate values of x, to compare with results
obtained from the S-data at large but finite values of R. This will test two of the hypotheses
proposed so far: firstly that the near-neutral modes obtained by C.S. are indeed centre modes,
i.e. that the scaling (3.1) and transformation (3.2) for w are appropriate: secondly that the
expansions (3.15) for small |x| and (3.27) for large |x| are being attained.
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3.3. Comparison with the results of C.S. when a =n =1

As a test of the theory of this section we present in figure 14, b the real and imaginary parts
w,, 0, of the eigenvalue w as obtained from the S-data at various values of R ranging from
10°-10° with & = n = 1. The fact that w,,», when multiplied by Rt and plotted against
(e—1) Ri, respectively lie on smooth curves is indeed consistent with (3.2). The results shown
are for the leading mode, i.e. that which is least stable at # = 0 and subsequently becomes

(@) - .
-
”~
R //
& 6t -7
3 ///J@ .
-
(]
[ (] 1 1 ! f"“ 1 1
-20 -10 /O._kx 10 L
-4
A -6}
P
//}
o X // s
~
~
° 7~
(®) ol o
\ ®
- N\
& il S
X Te=——d
1 1 1 Il 1 '1,.'| ! 1
& ex___ -10 0 ¥ 10 M
Rt \\ X
~ - x,
N
\
-2}

Ficure 1. (a) The real part of wR against » with n = 1. Obtained from the S-data with & = 1 at various values of
R:R=10% ¢; R=13x10% o; R=25x10% o; R =5x%10%, x; R = 10°, 0. Asymptotic results from (3.15),
; and from (3.27), ———. (b) As for (a) but the imaginary part of wR

unstable as g increases. Also shown are the asymptotic results for w obtained above as solutions
of the centre-mode equations (3.6). For small || the formula (3.15) is used, and for large |u|
we have used (3.27) for 4 both positive and negative. We see that for sufficiently small |g| the
agreement is good, and that for 4 € —1 it is excellent for both w, and ;. However for > 1
the agreement between the S-data and the asymptotic expansion (3.27) is poor especially for
o,, the numerical values of which show no sign of decreasing to zero as predicted by (3.27). In
§5 we shall propose a second asymptotic expansion for 4 when || > 1, but before so doing we
describe the results of the numerical integration of (3.6) at finite values of y so that we may
confirm the accuracy of the S-data and examine more closely the status of the expansions
introduced in this section. :

37-2
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3.4. The numerical solution of (3.6)

Solutions of (3.6) have been obtained for n = 1,2, 3 by two methods. Firstly we tried a finite-
element method which, at # = 0 for example, reproduced well the values of 4 given by (3.11),
those for p > 1 occurring in pairs. Also for small |¢| and for reasonably large negative g, the
curves predicted by the expansions (3.15), (3.20) and (3.27) and (3.28) were being attained.
When g is large and positive the difficulty of the algebraically decaying eigensolutions is
exacerbated by the fact that the expected limiting form described in §3.2 has a critical layer.
A finite-element mesh was distributed more densely in the anticipated neighbourhood of this
layer and the position of the outer boundary of the region of integration was varied. However,
it seemed clear that the eigenvalue of the most unstable mode was not deviating far from the
predictions of figure 1 constructed from the S-data, and the value of 4; was showing no signs
of decreasing in line with the proposed asymptotic expansion (3.27). In view of the difficulty
of keeping track by this method of the various modes as x increases, and as a further test of the
S-data against the expansion (3.27), it was decided to develop, for simplicity, a finite-difference
approach which (when care is taken to avoid mode jumping) enables the individual modes to
be traced as g increases. The problem of algebraic decay was overcome by setting

st =ef—1 (3.30)

in (3.6) and, in addition, in order that the eigenfunctions sought should be bounded and non-
zero at the origin, factors s"~' were removed by writing

G,=s""G, K,=s""'K (3.31)
so that (3.6) becomes

s(A+ %) (sK'+nK+nG) + 2nps(sG’ +nG) .
=i[s*K"+ (Bn+1)sK"+ (n—1) 2n+ 1) K’ +nsG" +n(2n+1) G'], (3.32a)

s(A+5%) (sK'+nG+nK) + 2n*usG
= i[2G" + (3n+1) sG"+ (n—1) (2n+1) G +nsK” +n(2n+1) K']. (3.32)

The result of the transformation (3.30) is not shown.

We must now solve (3.32) with G, K regular at the origin and G, K = O(s™®") as s> 00, with
a normalization condition, say G(0) = 1. Of chief interest is the form of 4 as a function of x
in particular as u— 0.

The results for n = 1 are presented in figure 24,5 where the real and imaginary parts of
A are displayed for the five modes that, at 4 = 0, are the least stable. Thus at £ = 0 we show
the primary mode with 4 = —4/2(1+1i) as given by (3.11) with p =0 and the two pairs
A = —2el"(2p+1) for p = 1,2. Calculations for y # 0 were initiated by using the appropriate
formulae (3.15) and (3.20). The eigenvalue crossings at # = 0 are such that to each coincident
eigenvalue there correspond two eigenfunctions.

We first discuss # < 0 as this, the stable side of the neutral curve, is the simpler. The graph
of the eigenvalue of the least stable mode, in the neighbourhood of which, in addition," are
shown the results from the S-data displayed also in figure 1, is asymptoting the value obtained
from (3.27), and the other two drawn are asymptoting values from (3.28) and the undisplayed
result for the third mode respectively. For the leading mode they are graphically
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(a)

=0\ 4l
, 10f et
-40 0 __: 4 _0...-__'_..8.9 _______ lé_o_ ___________ I

p= e

pil”,””/ =O
..... 2
s p=1 \ P2

FiGURE 2. () Real parts of A for the leading modes with n = 1. Taken from the §-data with a = 1, 10* < R < 10°,
. Asymptotic inviscid results from (3.27) and (3.28), ——x——, Numerical results for the principal branches
distinguished at 4 =0 by p =0, 1, 2 in (3.11), ; and secondary branches distinguished by p = 1, 2, ———.
(6) As for (@) but the imaginary part of 4.

indistinguishable by the time y reaches — 10, but we plot the asymptotic form of the second.
A comment about the asymptotic form of the increasingly stable modes labelled ‘second
branch’ will be made in §7.

For s > 0 we show the development of the eigenvalues correspondmg to the three modes that
are least stable at # = 0 and subsequently become unstable at x increases. The leading mode,
which is shown together with the results derived from the S-data, becomes neutral at p.=
so = 3.8, but then shows no sign of attaining the asymptotic form (3.27) and neither does the
third mode. Both are becoming increasingly unstable. (The fact that the points from the S-data
in the graph of 4, in figure 2a seem to change from the calculated first mode to the third mode
as u increases past 50 is not felt to be significant. Greater accuracy at such large values of
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R, could not perhaps be expected from the Galerkin method used there and indeed the
deviation is no worse than that in figure 25.) However, the second mode (given by p = 1 when
4 = 0) does attain the asymptotic limit (3.27). As shown, the curves, particularly that for 4,,
undergo a rapid change of direction when the eigenvalue becomes almost equal to that for
the third (p = 2) mode at a value of # of approximately 25. Such rapid changes of direction
at a coincidence, or near coincidence, of eigenvalues leading to unexpected instability, or in this
case stability, are not uncommon. Another point of note is that this second mode (p = 1) does
not attain the same asymptotic form for 4 when g > 1 as it does for 4 < —1. When g < —1
the value of ¢ in (3.24) is 2 and the corresponding eigenfunction is given by (3.26), though
when g > 1 the value of ¢ in (3.24) is unity and the eigenfunction is given by (3.25).

Thus it seems clear that, contrary to our first expectations, 4 is not an analytic function of

(a)

=0 90| n=2

®

120 160 p

Ficure 3. ( ) As for ﬁgure 2z but n = 2, and no results shown from S-data. (b) As for (§) but'n = 2, and
no results shown from S-data.
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Fioure 4. Contrast of numerical results for the components of the eigenfunction G at g = 50 for the viscous
leading mode with n = 1, ——; (labelled p = 0 in figure 2), and the inviscid mode, ———; (labelled p =1 in
figure 2).
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Ficure 5. Comparison of numerical results (——) for the real paft of the eigenfunction G for the inviscid mode with
n =1 (labelled p =1 in figure 2) at x = 100 and the corresponding asymptotic result (3.25), — x—x—x. The
computed imaginary part of G is also shown (——-).
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4 regarded as a complex variable. The reason for this is that the range of s in (3.6) is infinite
(see remarks in Drazin & Reid 1981, p. 156).

A similar phenomenon occurs for » = 2. The results of the numerical integrations are shown
in figure 34,5 though for clarity the second branch solutions are omitted. For small x4 the
eigenvalue curves are well predicted by (3.15) and (3.20) and for x < 0 the asymptotic forms

(a)

®

4

200
G/
ol ¢

0

-4}
-200

Ficure 6. (a) The real and imaginary part of G for the leading viscous mode with n =1, g = 400.
(b) As for (a) but eigenfunction K.
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Fiurke 7. (a) As for figure 62 but n = 1, 4 = 800. (b) As for (b) but n =1, g = 800.
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(8.27) and (3.28) are being attained by the two leading modes, and the higher modes are
attaining corresponding inviscid limits. However, for # > 0 it is the third (p =2 at x = 0)
mode that attains the asymptotic form (3.27) after a near coincidence of eigenvalues with the
fourth mode. We may also note that when # > 1 the appropriate value of ¢ in (3.24) is 2
although it is 4 when # < —1, and again 4 is not an analytic function of x.

Before attempting to describe the asymptotic form of those curves that are not attaining the
predicted inviscid values (3.27) and (3.28) etc. it is of interest to contrast the eigenfunctions of
two modes. We consider z = 1 and the two modes of figure 2 that are least stable at g =0
(p =0,1) and then become unstable. In figure 4 we display the real and imaginary parts of
the eigenfunctions G for these two modes at # = 50. The leading p = 0 ‘viscous’ mode has only
just begun to take on the oscillatory character that we shall describe below, though the p = 1
‘inviscid’ mode has already assumed its asymptotic form (3.25). The position of the critical
layer is at s* = {x which corresponds to { = 3.26 and this is clearly being well produced by the
numerical work. In figure 5§ we compare the real part of G at # = 100 for this inviscid mode
as given by the numerical integration with its value as predicted by (3.25). The critical layer
of thickness O(u}) is centred at { = 3.93; the outer solution for the imaginary part of G is
formally smaller but more singular being O (g %1 —2s* p7!|™*) as s* > 1u.

As p increases the leading viscous eigensolution gradually becomes more oscillatory with
oscillations of increasing amplitude. The region of oscillation slowly moves to larger values of
s and spreads out in a manner quite unlike the concentration in the nelghbourhood of the
critical layer of the perturbation associated with the inviscid mode. In §5 we argue that this
oscillation extends throughout a region in which s = O(p) with K = O(4#G) and that the
amplitudes of the oscillations are exponentially large, specifically O(exp ,u*) These trends are
exhlblted in ﬁgures 6 and 7 which show the eigenfunctions at u = 400 and 800. Flgures 8and 9
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FIGURE 8. (a) As for figure 6a but n = 2, u = 400. (b) As for (b) butv‘n =2, p =400. ..
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FI1GURE 9. As for figure 6a but n = 3, x = 400.

show the effect of increasing 7 for fixed x. The effect is similar to that of increasing  for fixed n.
Solutions were computed for values of # up to 1000 and although the eigenvalues are expected
to be reasonably accurate (say to three significant figures) at these values the eigenfunctions
themselves begin to lose precise definition, though where necessary the outer boundary was
taken at { = 12 (s = 403) and the number of points across the region to be 1200. The effect
of varying both these quantities was considered. We conjecture that the final algebraic decay
for these highly oscillatory solutions takes place with s = O(u}) and support this by the analysis
of §5. '

A distinctive feature of figure 2 is that, for sufficiently large positive g, the primary branch
curves labelled p = 0 and 2 (and also in figure 24 the secondary branch curves labelled p = 1
and 2) are essentially parallel. The same is true of those labelled p = 0, 1 and 3 in figure 3.
The form of these curves was monitored extremely carefully as g increased, because initially it
was expected that these curves would eventually take on the inviscid asymptotic form of §3.2.
However, it soon became clear that this is not the outcome, and an estimate from the numerical
results for the leading mode with n = 1 indicated that

wiA >3l (3.33)

as u— 0. Justification for this will be put forward in §5 but before so doing we discuss the
analogous results for centre modes that exist in the region €* ~ R.

4. THE MODAL STRUCTURE WHEN €2/R = 0(1)

The calculations of C.S. strongly suggest that when R > 1 the lower branch of their neutral
curve for the most unstable mode lies in the neighbourhood of €? = 0.023R. In table 1 we give
the values of €*/R and of e—1—w, obtained from the S-data for a range of values of R when
a=n=1. ’

We now show that, when €* = O(R) and R > 1, there is a class of eigenfunctions, again centre
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TABLE 1. NEUTRAL CONDITIONS AT VARIOUS VALUES OF R FROM THE S-DATA

R €*/R e—1—w,
10000 0.0219 0.859
21000 0.0226 0.874
40000 0.0231 0.884

60000 0.0233 0.889
100000 0.0235 0.893

modes as in the neighbourhood of the upper branch when en & a, whose properties are
dependent on ae?/R and n only, and are independent of R and o.
To obtain these centre-mode equations we write in (2.2)

F=aR,(s), G=g(s), } @)
H="h(s), P= (aR)on)5,(s),
where ¢ is defined as
o = (aR)(ena)™ (4.2)
and r = (aR)™s again as in (3.1). We set
0 =oae—n+A(no)}, (4.3)
where A has to be found as a function of o, n. Then
y =—(1/n0) (A+s*), (4.4)
and by direct substitution into (2.2)
| ofi+sg+g—nky, =0, (4.50)
(/\+s2)f1+2sg“l=i[ ’{+%f{—-§ﬂ], (4.5b)
(A 4% g, —2noh, + ;= i[g;’+—1-g‘;-fs—t—l~g‘,+g§f-‘], (4.5¢)
(A+5%) by —2n08,+np, /s = i[h"l'+%l§;-—n2; 1 ky +%] (4.5d)

provided that terms that are of relative order R~ tare uniformly neglected. For an acceptable
solution of (4.5) we require f;, Z,, £, to be regular at s = 0 and to vanish as s > 00 for consistency
with the assumption that the disturbance is concentrated near the axis of the pipe. These
centre-mode equations have also been obtained by Berry & Norbury (1985) and solved,
with n = 1, for the value of o corresponding to neutral stability. They obtained o = 6.5 or
oe?/R = 0.024 in good agreement with the results of table 1; the corresponding value of A is
5.8. We extend their work and consider the solutions of (4.5) for all values of o.

As will be clear from the numerical solutions of §4.2 the system (4.5) has no real values of
o where the eigenvalues are equal in pairs as was the situation in §3.1 at x = 0. Thus it is
unlikely that eigenmodes will be easy to find analytically in this case, though the fact that
solutions exist for finite complex o may be established. A simple family is given by

&L= ’;1 = c-%ﬂs" fl = sﬂe_%ﬂa.» ph=0 (4.6)

38-2
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with g = e#*, which satisfies (4.5) provided n =1 and o = —2/8, A = —6/8, though as we
shall see, in general the decay is algebraic O(s"2~V*%) for g,, rather than exponential as in
(4.6). |

As was the case with (3.6) we shall find that the solutions of (4.5) have two possible limiting

forms when o > 1. Again, one is inviscid and is the analogue of the solutions presented in
§3.2. ‘

4.1. The inviscid limit when o > 1

When o > 1 it is possible to write down an inviscid limit of equations (4.5) in which
s = O(o?) and the right-hand sides are, on the assumption that A = O(c), of relative order
O(o7*%). By elimination we obtain for g, the equation ‘

s”g'{+3.gg'i+[1 —nt— A‘fﬁ_ (i'i‘;;‘;] &a=0 %)
an equation similar in form to (3.22). The solution of (4.7) regular at s =0 is
Sn-l 52
&i(s) = mF(al, by,n+1, —7\-), (4.8)
where o =n—k—}n*+4Y, b =h—k+in*+4)} (4.9)
if k is defined by nfo/A = —k(k+1). (4.10)

So that g, may decay as s— 0 it is necessary to choose 4, to be a negative integer or zero so
that the hypergeometric function F reduces to a polynomial. This leads to a sequence of values
for £ and hence, by (4.10), to a sequence of values of . If we take as principal eigensolution
that given by (4.8) with the weakest singularity, then this is

&,(s) ="/ (A+sH)E (4.11)

4n’o
ith k=n+int+4)} A=-— .
wit 2 +3(n"+4) [n+ (n?+4)}] [n+2+(n2+4)§]

(4.12)

Hence from (4.3), as o0 — o0,

4n :
[n+ (2 + 4 [n+2+ (0 +4)]

wW—>oe—n—

(4.13)

The presence of the singularity at s = (—A)} at first sight seems to raise difficulties about the
validity of the neglect of the viscous terms. We may however justify it on similar grounds to
those described in §3.2. A first-order correction to (4.13) may be obtained by substituting
(4.11) and (4.12) into the right-hand sides of (4.5) and expanding A in descending powers of
o®. The condition that the correction satisfies the boundary conditions then leads to the
result

o = 2(n+1).(k+1)% (2k—n+1)
L n(2k+3) o* ’

(4.14)

which is to be multiplied by i and added to (4.13) which is then in error by 0(c™%).
As in §3 there are two questions to be answered. The first is whether the centre-mode
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equations (4.5) are the correct limits of the full equations as R— o0, € > 00 with €2/R = O(1).
Secondly, as o— 00 in (4.5) is the inviscid limit (4.11) and (4.13) attained or is the limiting
solution of an entirely different form? Comparison with results for the primary mode with
o = n =1 extracted from the S-data at various values of R confirms that e—1—w, and w, are
functions of ¢/ Rt for sufficiently large € and R. However, again, as in § 3.3, the asymptotic forms
(4.11) and (4.13) do not seem to be being attained by the S-data. o ' '
To resolve this it is necessary to find numerical solutions of (4.5) at finite values of o and we

< now describe such solutions below.
—
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FiGure 10. (a) Real parts of A for the leading modes with z = 1. Taken from the S-data with a = 1, 10* < R < 105,
®. Present numerical results, . Asymptotic inviscid results from (4.13) and (4.14), —— x——. () As for (a)
but the imaginary parts of A.

PHILOSOPHICAL
TRANSACTIONS
OF



http://rsta.royalsocietypublishing.org/

A \
Y | A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

"

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

494 K. STEWARTSON, T. W. NG AND SUSAN N. BROWN

4.2. The numerical solution of (4.5)

Solutions of (4.5) were sought after elimination in favour of g, £, and substitution of

| &=5""g h=—s"" (4.15)
so that they become '

(A+5?) (sg +nsg + nsh) — 25%g _
= [s*%¢"+ (8n—1) sg”+ (2n*—b6n+1) g —4n(n—1) g/s
+nsk” +n(2n—3) k' —4n(n—1) k/s], (4.16a)
(A+ %) (*K + nsh+ nsg) + 25%h + 2no's(sg’ + ng + nk)
= i[s"h" + (3n—1) sh”+ (2n* —5n+ 1) K’ —4n(n—1) h/s
+nsg” +n(2n—3) g’ —4n(n—1) g/s], (4.165)

FiGure 11. (a) As for figure 104 but n = 2, and no results shown from S-data. (b) As for (§) but n =2,
and no results shown from S-data.
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which must be solved with g and % regular at the origin, g(0) =1 and g,k = 0(:"‘""'*"*) as
s—> 00. Again, to eliminate this algebraic decay, the transformation s = ef—1 was made as in
(3.30). . ' : ‘ :

To solve (4.16) the finite-difference method of §3.3 was used. In figure 10 we display, for
n = 1, the real and imaginary parts of A as a function of o for the modes that are least stable
at o = 0. The value of o, o = 6.45, at which the first mode becomes neutral is in agreement
with o = 6.5 given by Berry & Norbury (1985). Also shown on this figure are results derived
from the leading mode of the S-data with a = n = 1. These are seen to lie well on the curve
labelled 1. In figure 11 we undertake the same task for n = 2, though we omit the eigenvalues
of those modes that immediately become increasingly stable as o increases from zero. Although
o as defined in (4.2) is positive, negative values of o are included for completeness and for
comparison with the results of §3 for the centre modes where en & a; the curves shown for
o < 0 in fact correspond to stable solutions for negative axial wavenumber a. For small o the
figures look somewhat similar to figures 2 and 3 but we do not have the simplification of pairing
of eigenvalues and analytically realisable eigenfunctions. When ¢ is large and negative the
curves labelled 2’, 3’ and 4 attain the asymptotic forms given by (4.10) with £ as in (4.9) and
b, = 0, — 1, —2, respectively. The eigenfunction is obtained from (4.11) and for 2’ the value of
A, follows from (4.14). The probable asymptotic form of those labelled 1, 2, 3 and 4 is noted
in §7.

As in the centre-mode problem of §3, neither when n = 1 or n = 2 does the leading eigenmode
(labelled 1) attain the inviscid asymptotic form given by (4.10) and (4.11). This asymptotic
form is attained by the third mode when n = 1 and the fourth when # = 2. As an illustration
of the attainment of this inviscid limit we plot, in figure 12, the third mode with » = 1 and

-8L

Ficure 12. Comparisons of numerical results (——, ——-), for g, and g, with n =1 at 0 = 90 and the
asymptotic results (- x—, ~®@-) from (4.11).
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o = 90. The critical layer at s* = o/k(k+1) is at { = 3.10, and we also plot g(s) = (A +s%)~*
as from (4.11). This means that for { < 3.10, the asymptotic form of g is real to leading
order, but for { > 3.10, this asymptotic form has both a real and an imaginary part because
the factor |o/k(k+1)—s** is multiplied by e as s* increases through o/k(k+1).
For { < 3.10, the imaginary part of g is more smgular though formally smaller, namely
O(o™ 3|1 —k(k+1) s*a7*73). ‘

20}

10t

-10}

=20+

Ficure 14. The leading viscous mode for n = 1, o = 800.
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In trials to ascertain the asymptotic form of the leading mode values of o up to 1000 were
considered. However, it emerged that on and after o & 100 the results for A as a function of
o were graphically indistinguishable from those of the problem of §3 for A4 as a function of p.
Once this was suspected great care was exercised to confirm the conjecture, and comparison
of figures 13, 14 and 15 with figures 64, 74 and 84, respectively, reveals the similarity of g and
G as functions of { at 0 = 4 =400 and o = p = 800. In §6 we show that the proposed
asymptotic forms are, to leading order, indeed the same except at very large values of s,
specifically when s = O(,uf) ors= 0(0’*), where the algebraic decays for G and g differ.

- N
IRl
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i
10 : h
Y
:: I
L Ho il
ARRHL
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N = AN I E P L L
1 RV IV
aY !
v |,'
L y Hl
‘V’ ::
. i !
-10 ]
|
1
]
| 1
it
v

Ficure 15. The leading viscous mode for # = 2, o = 400.

As a final comment in this section we note that, as was the case with 4 and g, the eigenvalue
A is not an analytic function of . For example, with n = 1, the third mode takes the inviscid
form (4.10) with b, = 0 in (4.9) when o > 1, but when o < —1 the curves marked 1 in figures
10 and 11 are not assuming an inviscid limit, though an inviscid limit is being attained by those
marked 2, 3’ and 4. Again as was the situation with figures 2 and 3 we note how parallel the
curves of figures 10 and 11 which do not correspond to the inviscid limit become and, in the
following section, analyse the form of these ‘viscous’ modes.

5. THE HIGHLY OSCILLATORY VISCOUS EIGENSOLUTIONS AT LARGE
VALUES OF /t AND O

In this section we attempt to analyse the forms of the highly oscillatory solutions of (3.32)
and (4.16) as the parameters # and o increase, and to justify the formula (3.33) conjectured
from the numerical work; the same formula will be shown to hold for the most unstable mode
of (4.16), also when n = 1, with g replaced by o and 4 by A. To do this we concentrate on
(3.32) and then show that, except in the very outer region where the algebraic decays differ,
the systems (3.32) and (4.16) are identical to leading order. This means that these solutions

39 Vol. 324. A
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hold, at sufficiently large values of R, from one branch of the neutral curve to the other, i.e.
right across the unstable region in the (R, £2)-plane.

It emerges that, to discuss these viscous eigensolutions, it is necessary to divide the range of
s into four regions, namely s = O(u), s = O(1), s = O(ui) and s = O(ui). In the first the
solutions are Bessel functions but not of real argument and therefore, because they are regular
at the origin, they are exponentially large at the outer edge. The second serves to distinguish
the eigenvalues of the various modes whose asymptotic form for the modes of this type is the
same for each to leading order. In the third region the W.K.B. approximation is appropriate
and in the fourth the final algebraic decay takes place.

We first present the solutions in the four regions for the system (3.32) and then show how the
matching determines the eigenvalues. It emerges that the required formulae are available at
an earlier stage of the expansion if we consider (3.324) together with the equation obtained by
eliminating # between (3.324) and (3.324) by differentiation and subtraction. This new
equation is

2 (A+5%) (sG"+ (2n+1) G') 4+ 25*(sG' +nG +nK)
= i[*G" + (4n+2) *G" + (4n*— 1) sG" — (4n*—1) G'], (5.1a)
and (3.325) is
s(A+5?) (sG' +nG+nK) + 2nusG
=i[s*G"+ (Bn+1)sG"+ (n—1) (2n+1) G’ +nsK"+n(2n+1) K'}.  (5.15)
5.1. Region 1: 5= O(ﬂ_%)
In this region, which extends to the origin, we set
s=pt, A=, G(s)=G6(), K(s)=pK(t) (5.2)
in (5.1) and retain the leading-order terms only. This results in, from (5.15),
T'tR+2ntG = i[tK” + (2n+1) K') (5.3a)
and, from (5.14), '
TG + (2n+1) G') 420K = i[£GY + (4n+2) £2G” + (4n*—1) 1G" — (4n*—1) G').  (5.3b)

Now (5.3) are the same equations as were solved by Pedley (1969) in his small axial wave-
number solution of this problem, though we shall not here be seeking a solution that vanishes
at a finite value of the independent variable as in his case. However, either by the method he
employed, or by direct substitution, we may show that the solution regular at the origin is

6= B4 K- Bianphl, &4
where the 4; are constants, J, is a Bessel function of the first kind and , satisfies the cubic
p(P*—iI') = 2n. (5.5)
If, as we shall assume below and argue that it is correct, two of the § are equal the missing
solution is
- o)
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As ¢ increases along the real axis, G will become exponentially large unless p; is real as it was
in Pedley’s situation. If p, is real then G, K in (5.4) decay as s™™% as s> 00 whereas the decay
for (3.32) is s72". Thus the outer boundary condition is not satisfied in this region ¢ = O(1).
Because the numerical work indicates that § is not real we are prepared to accept that G is
exponentially large. We shall present an argument that matches both the exponentially large
and the exponentially small terms in G which turns out to be possible only if § in (5.5) has equal
roots. There are three possible values of I” for § to have equal roots, i.e.

I'=3nted™ with p, = p, = nbe ¥, (5.7a)
I'=3ndet™ with p, = p, = ndel, (5.76)
I'=-3di with p, =p,=—nb (5.7¢)

and p; = —2p, in each case. The first of these agrees with the prediction (3.33) from the
numerical work. It corresponds, for > 0, to an unstable mode with I{ >0, I, <0, and
evidence will be put forward below that it is applicable to the curves labelled p =0, 2 in
figures 2 and p = 0, 1, 3 in figures 3. The value of I'"in (5.75) also corresponds to an unstable
mode but with I > 0 and we did not encounter this. The third value of I', (5.7 ¢), a stable mode,
with I, = 0 to leading order, is most likely to correspond to those labelled ‘second branch’ in
figure 2. If 4 < 0, because of the factor ptin (5.2), then (5.74) and (5.756) correspond to stable
modes whereas (5.7¢) is unstable. Because # < 0 is the stable side of the neutral curve we
naturally did not encounter (5.7¢) but the second branch curves in figure 2 are in reasonable
agreement with (5.754) on changing the sign of # in (5.2).

We now proceed on the assumption that for the unstable modes with g > 1 the value of I’
is given to leading order by (5.7 a) and demonstrate that the suggested matching indeed requires
equal roots for §. We consider the matching for G only, as it follows from (5.34) that K is then
automatic. The asymptotic expansion of (5.4) for |¢| > 1 is now required with p, defined in
(6.7a) and

s g Jultnt) |, Ju(hnt) |, Ju(2019)
O= ATty TG S &)

and because p, is complex the exponentially small terms in these expansions are, in the sense
of Poincare, indeterminate if ¢ is large and real. As we wish to match such terms we change the
direction of the path of integration so that it makes an angle of jn with the positive real ¢-axis.
This will change the eigenfunction, but leave the eigenvalue unaltered as long as the final part
of the path in the s-plane is along the positive real axis and no singularity of the equation is
enclosed between the displaced path and the real axis of s. Because p, ¢ (=¢,) is now real it
follows from (5.8) that, for |f{ > 1,

G~ (2m) 7" YA, ity (e — e7X) + (4, — 3(4n® + 3) 4,) (e +e7) + (4,/ v/ 2) (e + 7)),
(5.9)

where terms O(f;"}) have been omitted and
X =t —inm—3n, x,=2t—inm—in. (5.10)

Before further considering (5.9) we present the solution at the very outer edge of the layer
where the algebraic decay takes place.

39-2
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5.2. Region 4: the very outer solution, s = o(ub)

This is tl;le region in which the correct algebraic decay, G = O(s™%") in (3.32) and g =
O(s™~™**9% in (4.16), takes place. It is the only region in which the limiting form of these
viscous eigensolutions for the two systems differs to leading order in ¢ or . The solution is
inviscid in each case and satisfies the left-hand sides of (5.1) and (4.16) respectively. From (5.1)
we find that the algebraically decaying solution in the region where s = O(,ui) is

G = 17" J,(2nifr,), s= uir,. (5.11)
For (4.16) the corresponding solution in the region s = O(o?) is
g=11"Jra} (2nif1y), s= otr,. (5.12)

To determine the eigenvalues we are going to require the match of both exponentials so, to
determine the term that would be exponentially small when r, is real and small, we let r, tend
to zero along a path with argr, = —in. Thus

G Er{™ts {exp [ (?ﬂ—-mt - zﬂ)] +exp [ —i‘(%n—l-—%nﬂ —%ﬂ)]}, ’ (5.13)
N 1

g Er,"*i{exp[i(gr’:—i—g\/(n2+) i)]+exp[—1(2———\/( +4)—3n )]}, (5.14)

where E, E are constants.

There are four other solutions of each of the sixth-order systems in this region. They are
viscous solutions ; two of them are exponentially large as s - 00 and must therefore be discarded.
The two exponentially small ones will match automatically with the solutions in region 3 which
we now discuss.

and

5.3. Region 3: 5= 0(/4*)

It is this region that contains most of the oscillations evident in the numerical solutions. The
solution sought therein is of W.K.B. form and we write, in (5.1),

s = pbx A (5.15)
and .

G= exi)[VJ‘fdx:I (G~o+él/v+o(v")), K= vzbex‘p[vJ‘fdx](lzo+l€',/v+o(v")), (5.16)

A= LA/ +0(™), - (5.17)

where v = g and g > 1. For I} we take I}, = 3ndel'™ asin (5.74); it emerges that I is the same
for all modes of the type sought and the eigenvalues are distinguished by a sequence of values
of I. Substitution of (5.15)—(5.17) into (5.1) yields, successively, relations between K, and G,,
an equation for f and, after some calculation, a differential equation for G,. These are

(I +x—if?) K, + 216G, = 0, (5.18)
_ ST+ 22 —if?) = +2n, | . (6.19)
2x(if®—n) Gy + [3if%f'x+ (2n+1) (if*—n) +fx*— T, 2] G, = 0, (5.20)


http://rsta.royalsocietypublishing.org/

y A\
l B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V am ©

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

VISCOUS CENTRE MODES 501

where, to derive (5.20), the plus sign in (5.19) has been used. With the minus sign in (5.19)
the sign of both fand I in (5.20) must be changed.

We now define f,, f, and f; to be the roots of (5.19) with the plus sign and #,, 4, and #, the
roots of (5.19) with the minus sign when Iy = 3nfe!®; thus &, = —f;, etc. We aim to show the
consistency of assuming this value of J; and to determine I. To leading order the solution in
(5.16) for G is given by

G, = f‘, f";(x) exp [u L j;dx;]+j_§1f?,-(x) exp [v J: ky dxl], (5.21)

J=1

where
2 = ¢ 1 : ._'fzf___ __1. J-z ;flx_l ]
K(x) = —W( - 1 EXP [Ji J;m 7 n'dxl 2 ) difi—n dx, |, (5.224a)

~ D hyx
= __:__ 1 UL
H,(x) (1h3+n)‘ cxp[ I BYT ks n f% H g 1]. (56.22)

In figure 16 we plot the real parts of n‘*f,, n"%h as functions of n~4x. For small x,

Sufa ® ety L 73 ety x, | (5.234)
fo = 2t el 4 O (x?), (5.236)

and for large »
Jofe= ix/\/2+0(1), So = 2n/xt. (56.244a,b)

Fiure 16. Real parts of n‘*f,, 8/1 in (5 21) as functions of ~}x. The constants Ci» Cigs Cas Capy Cagy Dy,
D, D,, Dy, D 3x in (5.22) are associated with the branches shown.
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At x = n33% we have JS1 =f; (both real and imaginary parts) this being the reason for choosing
it as the lower limit of integration in (5.22).

We aim to match this W.K.B. solution to the Bessel function solutions of region 1 as x>0
and ¢t— o0, and to the Bessel functions of region 4 as x— 00 and r; - 0. We shall match all six
terms in (5.21), altering the direction of the path of integration when it is necessary to make
the exponentially small terms determinate. We first note that the forms of f), 4, are, as x>0,
exactly right to match the exponents in (5.9) because comparison of (5.19) and (5.5) shows that
atx = 0, f= —ip, and the relation between x and ¢ is vx = & Also, as x> 00, f; and k; are right
to match the exponents in (5.13). Thus the solution in this region should bridge the gap between
the two different Bessel function solutions, though additional regions will be required near
x =0 and x = 743t where two pairs of the exponents in (5.21) are equal. We see immediately
from figure 16 that it will be necessary to set D, = 0 because of the exponential growth
associated with %, and if we label the constants in (5.22) C,y, Cig, Csy Cary Cigs Dins Digs
Dy, and Dyy, the L and R denoting that their values will differ each side of the point x = 3%,
then C,y is also zero. It emerges that each of these constants is of the form b, e’ where b,,
¢, are, to leading order, independent of » and it will be sufficient for our purpose to consider
the exponents only; we shall write = to denote that two constants have equal exponents to
leading order. Two relations between the exponents of the remaining eight constants follow at
once. One follows from matching the terms in f; and %, to the term in 4, in (5.9): we
obtain o _

‘ Cy, = Dy = A, (5.25)

Also for large x, the terms in £y and f; may be matched resﬁcctively to the two terms in (5.13)
to give

E = Dy exp [v J' kg dx] = Cyy €Xp [V J f,,dx]. (5.26)
0 °

We may note the correct algebraic power of x, namely ™%, from the match between the terms
in_f; and kg in (5.21) and the term in 4, in (5.9), and the correct power, namely x™"* for the
match with (5.13).

An attempt at a direct match between the terms in f}, f, and %, in (5.21) and those in 4, and
4, in (5.9) fails because of the mismatch of the algebraic powers of ¥ and ¢. Thus an additional
region is required in the neighbourhood of ¥ = 0. The presence of this region is to be expected
because of the equality of f, and f,, and %, and %, at x = 0. The terms in f; and k; match straight
through this region. It emerges that it is this region that essentially determines I3, giving a
sequence of values and corresponding eigenfunctions.

5.4. Region 2: s = 0(1)

This region occurs because f;(0) = f,(0) and 4,(0)
s and we take K = O(»*G) and write

h5(0). In it the appropriate variable is

G(s) = e H(s) = eV"® H(s), K =12eV"®L(s), (5.27)

‘where 6® = —n?so that this will accommodate £, f,, %, or k,, the exponential factor €”** matching
immediately with that in (5.21). We now substitute (5.27) into (5.1) and retain the leading
terms and those of relative order vt and v, because the two biggest sets of terms will go out
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automatically as f; and #, are, at the origin, double roots of (5.19). After elimination of L and
some calculation we find that the equation for H is

SH + (2n+1) sH + [ =3+ 42N+ )] H=0, (5.28)
which, if we set, . | | | ‘
s?=38tel"z and H(s) = e ¥8(2) . (5.29)
is recognizable as the confluent hypergeometric equation
28"+ (3—2) 8’ — 3—L3tel" ;) S = 0. (5.30)
This is the equation that holds in the neighbourhood of both points D and @ in figure 16.
Near (D we take 8 = nded'™ in (5.27) and near @ we take § = —niel™.

When s is small the solutions for H in (5.28) have H ~ s, "% which will match
automatically with the powers of ¢, in (5.9). When s > 1

H(s) m eltos’sn-1-1u/6, (5.31)

where 8, = (1/4/3) ¢ ¥ for a match with the term in f; or h, in (5.21), and 8, = (—1/4/3) e it
for a match with the term in f, or k,. The powers of s in (5.31) match automatically with the
powers of x as x—> 0 in the appropriate terms of (5.21).

In the neighbourhood of the point D we must exclude the solution of (5.30) that is expo-
nentially large as z—> o0 because this would match with the term in A, in (5.21) which, by
reference to figure 16, we noted above must not be present. Thus the required solution is, in
the usual notation, 4U(a,,3,z), where -

a6 =3-G3her, (5.32)

and 4 is a constant. We propose to match this solution, for |s| < 1, with the appropriate terms
in (5.9), namely those in e (those in e are matched at the point () ). Because, for small z,

3 1 1
Vows ) —n{(ao_%) 3 g~ 1)1 (=} !}’ (5.33)

it follows from (5.29) that, for small s,

2 1 '
H(s) ~ —uiAsi-"{ - } 5.34
) (@0—3)! (ap—1)!5(1/3etm)k - 639
We note that the powers of s match automatically with the powers of ¢, in (5.9), and matching
the constants, but again retaining the exponential factors only, leads to
A e ' A e 4722 + 3
@D G- hTTs
where it is essential to retain the factorials involving a,, because it emcrgcs' that thcse., which
determine the eigenvalue I, themselves have exponential factors.
When |s| > 1 we match this solution with the term involving k, in (5.21) as x—>0. It may
be verified, by using (5.225) and the asymptotic form of U(a,, 3, z) that the algebraic powers of
s and x are exactly right (they involve I in fact) and therefore that ‘

4, (5.35)

A<D, (5.36)
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Near the point ) in figure 16 we require a solution of (5.30) that is exponentially large as
z— 00 to give a match with the term in f] in (5.21). The constant C, would come from a match
with the exponentially small component which would be determinate if we matched at an
angle such that z were purely imaginary, i.e. args = 3n. However, the value of C, is immaterial
because it corresponds to a solution of W.K.B. type that is exponentially small as x - c0. Thus
we match only the exponentially large term as s> 00. The required solution of (5.30) leads to

H(s) = s e ¥[ag Ulag, L, 2) + By M(ay, 3, 2)], (5.37)

where o, and S, are constants. When s < 1, we have from (5.37) that

w[p 206V T oo v/m(v/Bet)i
H(s) ~ s [ﬂo—-(::"_ %)“' +2 (aof_ 1)& ) } (5.38)
and for s > 1, H(s) ~ ﬁﬁ#—n (\“;_236—%1,‘)“04 exp [2\/3 lm] (5.385)

Thus matching the exponential parts of the constants in (56.37) and (5.38) with the terms in
e in (5.9) and the terms involving f; in (5.21) respectively we obtain

4n*+3
8

20,V T e o,

b a1~ A i AT

4, (5.39)

and" (aol—’i- 01 = C,yp (5.46)

The analysis of the neighbourhood of the point (D gave us 4, in terms of 4, (from (5.35)) as
a result of excluding the term in 4, in (5.21), and then D, in terms of them as in (5.36). This
examination of the neighbourhood of the point @ has now given us C,, in terms of 4, and

A, as
: c. S 4, + 24/1 (A _4n2+3A) (5.41)
T (=1 (g=IVT 8 TE) '

The interpretation of (5.41), from which are omitted multiplicative powers of v and order one
constants, is that at least two of the three terms C,;, 4,/(a,—1)! and

(4,— (42" +3) 4,/8) /(2 —3)!

have the same exponential constant factor. The third may be smaller.

5.5. The regions x = b3t + O(y%)

At the point marked @) in figure 16 we have f; = f;, and at @ we have &, = &, so that these
are turning points of the W.K.B. solution. To the right of @ we must exclude the term with
exponential growth, i.e. C;z = 0, and to the right of @ we require the exponentially growing
term in Dy to match with the Bessel functions in region 4, and the value of the exponentially
decaying term with factor D,y is immaterial. The relation between Cyp and D,y is given by
(6.26).

We deal first with the point @). It emerges that the appropriate equation in the neigh-
bourhood of this point is Airy’s equation and is found by setting

x=nt3t4yix,, (5.42)
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with s = /L*x_ asin (5.15), in (5.1). As in the neighbourhood of @ and (@), and throughout the
region x = O(1), K = 0(»*G), and analogously to (5.27) we write

G(s) = e7H,(X,), K(s)=v*e™L,(X,). = (5.43)

 For this discussion of the point @) we require 8 = nfe ¥, i.e. the value of f; and f; at x = n3t,
In (5.1) we retain the leading-order terms and those of relative order »# and v On
elimination of L, the result is that H, satisfies

Hy+ (3)in'3iX, H, = 0 (5.44)
with solutions 4i and Bi of argument
onb\b "
(?) et X,. (5.45)

Now to the right of the point ) we must exclude the exponentially large term, i.e. we must
have no multiple of the function Bi. To the left of @), if X, is real then 4i is exponentially large
for X; < —1 and the exponentially small contribution is, in the sense of Poincaré, indeter-
minate. As we wish to connect both C,; and C,;, with C,p we therefore choose to match with
the solution (5.21) along a line on which e ¥#°X, is real. Thus, for X, e¥* < —1,

I , ,
4i( () ertex,) o (— ) Koo — ko, (5.46)
I
where £= %(33"7) ehie(— x 1, | (5.47)

Now near the point @) where f, = f; we have, for x < n}3},

s_ Yo 2%71g C—}m i S %
Jofs mnte ¥+ 3! (n33t—x) (56.48)

so that the exponents e** in (5.46) match with those in the terms in f; and f; in (5.21). The
power (—X,) 7% is also correct, and matching the exponential part of the constant leads to

nia% nés%
Csy [v Sa dx] = Cyy, exp [V N dx] . (5.49)
0 : 0 A

For e #°X, > 1, Ai is exponentially small as required, and again we may check that the
exponent matches with that in the term in f; in (5.21) and that the X7t power is also correct.
A match of the exponential parts of the constants gives

Cox = Cyr- (6.50)

In the neighbourhood of the point @ the analysis is similar, but this time we require a
multiple of the solution Bi as well as of 4i. We again match with X, e ¥" real and obtain

] A

n°3
D,y exp [VJ hy dx] = D, exp [vj hy dx] + Dy, exp [v.r
0 0 0

40 Vol. 324. A

]
hy dx]. (5.51)
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No relation is found between D,; and D,; because, in contrast with the argument relevant to
the point @), we are not excluding an exponentially large term to the right of x = 3t The
value of D,y could be found if required but it is immaterial.

Thus we have nine relations between the exponential parts of the nine constants 4,, 4,,
Ay Cipy Cary Cag, Dy, Dy, and Dy, Essentially, setting the determinant of the coefficients to
zero determines the one unknown g, which, from (5.32), then leads to 7. Elimination between
these relations, i.e. successive substitution in (5.25) and (5.26), and (5.35) and (5.37) for the
D, in terms of the C,, and 4, and 4,, and finding that the term in D, on the right-hand side
of (5.51) is exponentially smaller than the other terms and may be ignored, gives finally

(ag—3)1 4, = (ag—1)! (4, —§(4n*+3) 4,) (6.52)
together with

(ag—1)! (g, —2)! < exp[2vJ‘:f3dx+2vfn%s% (fl—fa)dx],  (5.53)

0

if either 4, 5 0 or 4, —}4,(4n*43) # 0. The real part of the integral on the right-hand side éf
(6.53) has been evaluated as

13

Re [ f: fde+ fsx ( f1 —£) dx] — (4.36—4.04) 7 > 0, (5.54)

Thus the right-hand side of (5.53) is exponentially large and to balance it we must have
(ag—3)! or (a,—1)! to be infinite. Hence either

ag=3 -1 -3 .. with 4,=0,4,#0 , (5.55)
or a,=0,—1,—2,... with A, =14n*+3)4,,4,+#0. (5.56)

We now therefore have a doubly infinite sequence of values of g, and hence of eigenvalues
I,. The leading one has a, = } so that

A = 3pbntet™ 4 4/3 e ¥4 0(1). (5.57)
For the second one g, = 0 and
A = 3uinfet™ 4-34/3 ¥ 4 0(1). (5.58)

The fundamental assumption of the above argument is that the required value of I; is such
that (5.19) has equal roots for fat x = 0. If this assumption is not made then it is not necessary
to consider the region s = O(1), and the match between the W.K.B. solution and the Bessel
functions in the region s = O(u™) is, to leading order, independent of the eigenvalue. Thus it
seems that the determinant of coefficients cannot be made to vanish and only the trivial solution
results. We shall see in §7 that the agreement between the results of this section and those of
the numerical work described in §3.4 is very good which gives us confidence that the argument
is correct. However, we first show that, apart from the region where s = 0(o?), discussed in
§5.2, the same analysis holds for (4.16), and that the values of A may be obtained by writing
o for p in (5.57) and (5.58) and so on for the higher modes.


http://rsta.royalsocietypublishing.org/

Y 4

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Y o

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

VISCOUS CENTRE MODES ; 507

6. THE IDENTIFICATION OF A AND 0 WITH A AND 4 FOR THE
OSCILLATORY EIGENSOLUTIONS

The numencal study of §4 strongly 1nd1cates that as # and o become large thc values of 4
in (3.32) and those of A in (4.16) are the same, i.e. A(x) x A(g). Indeed G(s) =~ g(s) as may
be seen by comparing figures 64 and 13 for n = 1, u = o = 400, figures 7z and 14 forn =1,
# = o = 800 and figures 8a and 14 for n = 2, 4 = o = 400. To demonstrate that the limiting
form is the same it is necessary. to eliminate K from (3.32) (or equivalently from (5.1)) and
h from (4.16).

On substituting for K from (5.14) into (5.14) and deﬁmng

kg(s, A) = —45*G/n+ (s/2n) (A+ %) (sG" + (2n+1) G') — (i/2n)
X [s*G" + (4n+2) sG" + (4n*—1) G"— (4n2’— 1)G'/s], (6.1)
we find that the equation for G(s) reduces to
(A+5%) (kg —45*G/n) —2nus*G | _
: = i[kg+ (2n—3) kg/s—4(n—1) kg/s*+ (65*/n) G" + (6/n) (2n+1) sG'). (6.2)
To eliminate % from (4.16) it is simpler first to define o
h=—g—(s/n)g’+k - (6.3)
whereupon (4.164) becomes o
ns(A+s%) E—Qsag = in[sh" + (2n—3) I‘Z.’——4(n— 1) k/s). (6;4)

When the substitution (6. 3) is made in (4.165) it may be written as, after use of (6.4) Wthh
enables the derivatives of % to be eliminated, ‘

A+ (sg”+ (2n+1) g )—Ssg ;
= 2ns(n®c—A—s*)h -1[s'°’ Vit (4n+2) s*g" + (4nt—1) sg” — (4n*—1) g'].  (6.5)
Thus we may solve for £ as
k=k,(s,A)/(nPc—A—s?), (6.6)

and upon substitution into (6.4) the equation for £, is

2

@A +1s2) (k,+-2-‘fn—g)—2nasﬂg - i[k;'+ (2n—3) K [s—d(n—1) k,/s*
o +4(sk,', (n—1)k, +T2_S2§"—‘)/(n20'—/1—52)]. (6.7)

It is clear that (6.2) and (6.7) have, apart from one term, corresponding left-hand sides, and
also have the first three terms corresponding on the right-hand sides. To show that, to leading
order for # > 1, o > 1, the functions g, G are such that g(s) & G(s), apart from in the regions
where s = O(z}) and s = O(g%), it is necessary to verify that the analysis of §5 does not use the
non-common terms to obtain 4 and A to O(1). This verification has been undertaken. In the
very outer region the orders of the Bessel functions for the two problems are different as shown
in (5.11) and (5.12) because the algebraic decay differs; this difference in algebraic decay may

40-2
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be detected in figures 74 and 14 for example. In the very outer region the appropriate inviscid
equations to be solved are obtained by setting 4 = 0 = A in (6.2) and (6.7), and by neglecting
the terms multiplied by i throughout. It may be noted that, with A = 0(o?), (6.7) has a singular
point in the region where s = 0(0'%); however, the leading approximation, given by (5.12), is
regular. '

It follows therefore that these highly oscillatory viscous modes occur, when the Reynolds
number is sufficiently large, right across the unstable region between the neutral curves of
Cotton & Salwen (1981) in the (R, 2)-plane. They are not simply confined to the neigh-
bourhoods of the neutral curves themselves.

7. A COMPARISON BETWEEN THE NUMERICAL WORK OF §4
AND THE ANALYSIS OF §5

It remains to demonstrate, as convincingly as possible, that the modes described in §5 are
indeed being attained by the numerical solutions of (3.32) and (4.16) as # and o respectively
become large. The modes that become inviscid as ¢ and o — o0, i.e. when n =1 the second
mode in the g-problem and the third in the o-problem, and when # = 2 the third in the g-
problem and the fourth in the o-problem, seem to be an anomaly and are in any case not the
most important.

To begin with we undertake a qualitative comparison and then quantify the statements
made. Firstly there is the assumption that the oscillation is concentrated in the part of the
region where s = O(ut) (for the second problem replace x by &). When g = 400, if s* = 44 then
¢ =In(s*+1) = 2.12, and if # = 800 then { = 2.33, which are not inconsistent with the regions
of high oscillation in figures 6-8 and 13-15. That the number of oscillations, at say x = 800,
is still small, of the order of two or three, is a reflection of the fact that the appropriate parameter
is 4% and still therefore modest. It is thus felt not to be significant that the oscillations do not
yet extend quite as far as s = #3344, In addition, these wildly oscillatory eigenfunctions are not
easy to compute though fortunately the eigenvalue is invariably of greater accuracy.

A second visual check may be made that verifies the assumption K = O(4%G) when s = 0(u})
and smaller. From figures 65, 76 and 8% we see that this is also reasonable. A notable
feature of figure 2 is the parallelism of the curves labelled p = 0 and 2 for x greater than about
120. A similar remarks holds for those labelled p = 1 and 2 ‘second branch’ (both for 2 > 0
and for 4 < 0) and for those labelled p = 0, 1 and 3 for # > 0 in figure 3. For the second problem
a similar phenomenon is evident for those labelled 1, 2 and 4 in figure 10 and 1, 2, 3 and 5 in
figure 11 when o > 0. When o <0 the curves, including those numbered 3 and 4 in the
respective diagrams, are again almost parallel. We may note that the values of 4, proposed in
(5.55) and (5.56) lead, from (5.2), (5.17) and (5.32) to

A=3ubded" 4 \/3(1+20) e 4o(1), 1=0,1,2,..., 4 (7.1)

so that the distance between successive eigenvalues is —4/6(1+1) which, in addition, is inde-
pendent of n. It can be seen that the distance between the parallel curves is approximately
1/ 6. ' '

The analysis starting with p, = —nf asin (6.7¢) has not been carried through, though it may
be conjectured that the values of a, are the same as in (5.54) which would account for the
difference in the eigenvalues shown as ‘second branch’ for p = 1 and 2 in figure 2 also being
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approximately —+/6(1+1i). On the left, i.e. for # < —1 in figure 2, the second branch curves
seem to be given by the value of p, in (5.76); because # < 0 both A4, and A, are negative.

A more precise comparison between the theory and the numerical results will now be
presented. We first attempt to verify (7.1), remembering that the same formula holds for A as
a function of ¢. In table 2 we tabulate

A, I) = {4+ /31 +21) (1 +i)}n b, (7.2)
(where the values of 4 are obtained from the numerical work for the two most unstable modes

for 4 > 0) for I = 0,1 with » = 1,2, and the correspondingly defined A(%, ) in table 3. In each

TABLE 2. VALUES OF 4 As DEFINED IN (7.2)
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A(1,0) A1, 1) A(2,0) A2,1)

—2.559+ 1.427i —2.596+1.431i —2.552 + 1.425i —2.542 4 1.424i
—2.559+1.477i —2.560+ 1.462i —2.569+ 1.453i —2.567+ 1.452i
—2.557+1.493i —2.576 + 1.455i —2.576+1.464i —2.576+ 1.461i
—2.584+1.473i —2.576+1.470i —2.580+1.470i —2.581 + 1.471i
—2.582+1.478i —2.583+1.474i —2.583 + 1,475 —2.584 4 1.476i
—2.583+ 1.481i —2.583+1.475i —2.584 +1.478i

700 —2.583+1.483i —2.585+1.479i —2.586 + 1.480i

800 —2.584 4 1.485i —2.587+ 1.481i —2.587+ 1.481i

900 —2.585+ 1.486i —2.588+1.483i

1000 —2.585+1.488i —2.580+1.484i

TABLE 3. VALUES OF A OBTAINED BY REPLACING 4 BY A AND 4 BY 0 IN (7.2)

o A(1,0) A(1,1) A(2,0) A2,1)
100 —2.549+1.430i —2.515+1.386i —2.551+1.422i —2.544+1.415i
200 —2.572+1.454i —2.578+1.442i —2.569 +1.452i —2.566+ 1.449i
300 —2.578 +1.467i —2.576+1.464i
400 —2.582+1.472i —2.580+1.470i
500 —2.584 +1.476i
600 —2.585+1.479i
700 —2.587+1.481i
800 —2.587+1.483i
900 —2.588+1.484i
1000 —2.589 +1.4851

case the predicted limit as 4 or o tends to infinity is 3etl", i.e. —2.598 + 1.5i. In addition to these
comparisons on the eigenvalues it is instructive to make a comparison on the limiting eigen-
functions predicted in §6. For the leading eigenfunction we take, as suggested by (5.55),
A, =0 and 4, # 0 in the inner solution (5.8); it may be shown, by using (5.25) and the other
results of §5, that 4, is also exponentially small. Thus, from (5.6) and (5.8) we obtain the
result

K(0) ~ phnb el = pd}(0.866 +0.51), (7.3)

because G(0) = 1. In table 4 we show K(0) /uknt as derived from the numerical solution of
(8.32) for the leading modes when n = 1, 2 and 3 for various values of u. It seems that the
asymptote predicted in (7.3) is being attained.

One further check is presented in table 5. This concerns the eigenfunction for the leading


http://rsta.royalsocietypublishing.org/

y A\
s

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

V am ©

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

510 K. STEWARTSON, T. W.NG AND SUSAN N. BROWN

TaBLE 4. VALUEs oF K(0)/uén For n =1, 2 aND 3

: n=1_ n=2 n=3
ko K©0)/d K(0)/p2% K(0)/ut3*
500 0.836+0.564i 0.830+0.573i 0.820+0.5961
600 0.839+0.543i 0.832+0.568i 0.822 +0.588i
700 0.841+0.541i 0.834 4+ 0.5651 0.82340.584i
800 0.843 +0.539i 0.836+0.562i
900 0.844 +0.538i1 0.836 4+ 0.5591

1000 0.845+0.536i  0.837+0.557i

TaBLE 5. VALUEs oF o }(dk/d¢+3dg/d{) AT { = 0 AS OBTAINED
FROM THE NUMERICAL INTEGRATION

o o Hdh/d{+3dg/dE),,

100 —0.839—0.582i
200 —0.845—0.564i
300 —0.852—-0.554i
400 —0.855—0.549i
500 —0.856 —0.546i
600 —0.858 —0.542i
700 —0.860—0.541i
800 —0.862—0.538i
900 —0.863 —0.536i
1000 —0.864 —0.534i

mode of the g-problem with n = 1. When s = O(d%), i.e. t = O(1), the limiting solution for g
is the same as for G in (5.8). Thus with 4, = 4;=0and n =1

‘ gr A0\ (0 0) /bt (7.4)
and it may be shown that the corresponding function # is
h=—sdg/ds—g— A, 078t (p, ) (7.5)

where s = 0% and p, = ¢ ¥* as in (5.7a). Using this we may derive the relation
| dh/d¢+3dg/d¢ = —aFip, = —03(0.866 4 0.51) (7.6)

between the derivatives of 4 and g with respect to { evaluated at { = 0. The variable §, defined
by s* = ef—1 as in (8.30), was used as independent variable for the numerical integration of
(4.16). In table 5 we tabulate oY(dh/d¢+3dg/d), as derived from the numerical integration
for the leading mode of (4.16), the predicted asymptote of which is displayed in (7.6). This,
because it involves the derivatives of the calculated functions, is quite a stringent test of the

agreement between the numerical work and the asymptotic analysis.

8. CONCLUSIONS

We have examined the centre modes of rotating Poiseuille flow that were recognized by
Cotton & Salwen (1981) in their numerical computations as the Reynolds number R increases.
These centre modes occur in the neighbourhoods of both the upper and lower branches of their
neutral curves in the (R,£)-plane and have been shown here to satisfy limit equations
containing parameters # and o respectively. As |¢| and || > 00 possible solutions of the limit
equations are the inviscid near-neutral centre modes discussed by Stewartson & Brown (1984).
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Comparison with the data of C.S. taken at various large values of R confirms that the modes
they obtained are indeed centre modes, and that the scaling and parameters of the limit
equations are correct, but that the inviscid centre modes are not the attained asymptote on the
unstable side of the neutral curve. Solutions of the limit equations at finite but large # and o
show that the inviscid -mode is a possible asymptote; for example when the azimuthal wave-
number n = 1 the inviscid asymptote is attained by the mode that at # = 0 is the second most
unstable; but in general the large # and o solutions are viscous. We have analysed the form of
these highly unstable viscous modes for |¢| and |o| > 1 and the results are in good agreement,
not only with the predictions of C.S., but also with the present solutions of the limit equations
for finite # and o. It emerges that the solutions for both problems are the same when y# and o
respectively are sufficiently large, the implication of this being that these oscillatory viscous
modes are present, as R-> 00, right across the unstable region between the neutral curves. This
is in accord with the results of C.S. who also predicted instability in this parameter range. A
formula for w for the region between the neutral curves may be written down from (3.2) and
(5.57) (or equivalently from (4.2), (4.3) and (5.57) with 4 and x replaced by A and o); this is

& aé—n+3(ae/R)tel, s

the conditions for the validity of which are en > o and €2 > R.

The modes described here are quite different in structure from the wall modes of Maslowe
& Stewartson (1982) and the modes analysed by Pedley (1968, 1969). The inviscid modes
studied by Maslowe & Stewartson are near-neutral with a critical layer on the wall of the pipe
and are the limits as 7> 00 of those earlier computed by Maslowe (1974). Even as n increases
C.S. do not encounter such modes although they have larger growth rates than the inviscid
centre modes of Stewartson & Brown (1984). When R > 1 the condition for the validity of the
modes of Pedley (1968) is a?/n* < 1, ae® < en—a and, because it is possible to scale a out of
the governing equations (2.2) so that this parameter appears only in the boundary condition
which must now be applied at 7 = a, one might expect that these modes for narrow tubes would
bridge the gap between the theories of the wall modes and the centre modes. To a certain extent
this interpretation is valid, as described by Stewartson & Brown. It is interesting that all these
limiting theories predict en & o as a neutral condition; the viscous theory of Pedley (1969)
leads, in addition, to a second branch for the neutral curve that is in good agreement with the
calculations of C.S. at the lower values of a, but the second branch for the wall modes of
Maslowe & Stewartson is at 2ex & n. C.S. do not encounter this neutral curve, which would
be another straight line in their (R, £2)-plane but of very small slope at large R. However, as
the dominant modes are likely to be the viscous centre modes that we have described here, it
is not surprising that a numerical method tuned to capture these does not reveal the near-
neutral inviscid wall modes. :

A final comment concerns the application of the study to other vortex flows. Inviscid centre
modes are known to exist for the trailing-line vortex of Lessen ¢t al. (1974) if the swirl is not
too large. Stewartson (1982), in an analysis for n > 1, showed that the ring modes of Leibovich
& Stewartson (1983) are stabilized by viscosity in that the amount of swirl required for stability
is less. The effect of viscosity on the centre modes of Stewartson & Brown (198s) has not yet
been examined (the studies by Lessen & Paillet 1974 are at moderate values of the Reynolds
number) although it would be of interest to examine the possibility of viscous centre modes in
that situation also. These may be unstable at all values of the swirl.
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This work was initiated before the death of Keith Stewartson, in May 1983. We hope that
it has been completed as he would have wished and accept responsibility for any misconceptions
or errors. K. S. and S.N.B. benefited from support from the Fluid Mechanics Program of the
National Science Foundation under Grant MEA 8306713, and T.W.N. is indebted to the
Science and Engineering Research Council for a research assistantship. We are grateful to
Stephen Cowley for advice and encouragement and to Professor Harold Salwen for the
generous provision of unpublished data.
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